How to correct power factor in practical way?


When the need arises to correct for poor power factor in an AC power system, you probably won’t have the luxury of knowing the load’s exact inductance in Henry to use for your calculations. You may be fortunate enough to have an instrument called a power factor meter to tell you what the power factor is (a number between 0 and 1), and the apparent power (which can be figured by taking a voltmeter reading in volts and multiplying by an ammeter reading in amps). In less favorable circumstances you may have to use an oscilloscope to compare voltage and current waveform, measuring phase shift in degrees and calculating power factor by the cosine of that phase shift.

Most likely, you will have access to a wattmeter for measuring true power, whose reading you can compare against a calculation of apparent power (from multiplying total voltage and total current measurements). From the values of true and apparent power, you can determine reactive power and power factor. Let’s do an example problem to see how this works.

Wattmeter reads true power; product of voltmeter and ammeter readings yields appearant power.

First, we need to calculate the apparent power in kVA. We can do this by multiplying load voltage by load current:As we can see, 2.308 kVA is a much larger figure than 1.5 kW, which tells us that the power factor in this circuit is rather poor (substantially less than 1). Now, we figure the power factor of this load by dividing the true power by the apparent power:

Power factor= P/S

Power factor = 1.5kW /2.308kVA

Power Factor= 0.65

Using this value for power factor, we can draw a power triangle, and from that determine the reactive power of this load:

To determine the unknown (reactive power) triangle quantity, we use the Pythagorean Theorem “backwards,” given the length of the hypotenuse (apparent power) and the length of the adjacent side (true power):

 

 

 

If this load is an electric motor, or most any other industrial AC load,

it will have a lagging (inductive) power factor, which means that we’ll have to correct for it with a capacitor of appropriate size, wired in parallel. Now that we know the amount of reactive power (1.754 kVAR), we can calculate the size of capacitor needed to counteract its effects:

 

Rounding this answer off to 80 µF, we can place that size of capacitor in the circuit and calculate the results:

 

 

 

 

                                                                   Parallel capacitor corrects lagging (inductive) load.

An 80 µF capacitor will have a capacitive reactance of 33.157 Ω, giving a current of 7.238 amps, and a corresponding reactive power of 1.737 kVAR (for the capacitor only). Since the capacitor’s current is 180o out of phase from the the load’s inductive contribution to current draw, the capacitor’s reactive power will directly subtract from the load’s reactive power, resulting in:

Inductive kVAR – Capacitive kVAR= Total kVAR

1.754kVAR -1.737kVAR =16.519VAR

This correction, of course, will not change the amount of true power consumed by the load, but it will result in a substantial reduction of apparent power, and of the total current drawn from the 240 Volt source

 

This gives a corrected power factor of (1.5kW / 1.5009 kVA), or 0.99994, and a new total current of (1.50009 kVA / 240 Volts), or 6.25 amps, a substantial improvement over the uncorrected value of 9.615 amps! This lower total current will translate to less heat losses in the circuit wiring, meaning greater system efficiency (less power wasted).

For more details, Visit www.ipcsautomation.com

Have any Question or Comment?

Leave a Reply

Your email address will not be published. Required fields are marked *

Find Us

Address
123 Main Street
New York, NY 10001

Hours
Monday—Friday: 9:00AM–5:00PM
Saturday & Sunday: 11:00AM–3:00PM

About This Site

This may be a good place to introduce yourself and your site or include some credits.

Find Us

Address
123 Main Street
New York, NY 10001

Hours
Monday—Friday: 9:00AM–5:00PM
Saturday & Sunday: 11:00AM–3:00PM

About This Site

This may be a good place to introduce yourself and your site or include some credits.

Automation Training

Our foundation-to-advanced automation course training covers end-to-end industrial workflows used in modern plants. Learners practice the full cycle from basic circuits to commissioning and maintenance with hands-on labs, project-based fault finding, SOP creation, and documentation exposure (URS, FDS, FAT/SAT).

PLC Training

This PLC training builds controller fundamentals with ladder, FBD, and ST, including I/O wiring, PID tuning, diagnostics, and version control practices on live rigs.

SCADA Training

Our SCADA course covers tag databases, HMI graphics, historian/trends, alarm rationalization, redundancy, user security, backups, and deployment aligned to plant standards.

Panel Designing

This panel design course teaches standards-compliant MCC/PLC panel engineering, SLD/GA/wiring docs, device selection, heat-load, testing, and FAT.

BMS & Security

BMS training focuses on HVAC/lighting/utilities automation; CCTV & security covers design, storage, networking, and analytics.

IIoT

The Industrial IoT diploma spans sensors-to-dashboard pipelines: MQTT/OPC UA, gateways, historians, alerts/KPIs, and predictive maintenance basics.

Locations: Mumbai (Vashi), Pune (Chinchwad), Maharashtra, Kolkata, West Bengal, Madhya Pradesh, Chhattisgarh, Jharkhand, Hyderabad (Ameerpet), Bangalore (JP Nagar), Mysore (Vijayanagar 2nd Stage), Karnataka, Chennai (Anna Nagar West Extn), Tambaram (West Tambaram), Tamil Nadu, Tiruchirappalli (Chatram), Erode, Madurai (K. Pudur), Tirunelveli (Vasanth Nagar), Coimbatore (Hope College), Palakkad (Sultanpet), Pathanamthitta (Chittoor), Kottayam, Malappuram (Perinthalmanna), Thrissur (Keerankulangara), Kannur (Thana), Kollam (Chinnakada), Thiruvananthapuram (Thampanoor), Kozhikode (Mavoor Rd Jn), Kochi (Kaloor)